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a b s t r a c t

We present an ab initio theoretical study of the electronic, linear and nonlinear optical properties

of CdGeAs2 using a pseudopotential plane-wave method. Specifically, we evaluate the band structure,

density of states, charge density, the dielectric function e(o) and the second harmonic generation

response susceptibility wð2Þ312ð�2o;o,oÞ over a large frequency range. As LDA underestimates the band

gap, we have applied the GW approximation method to calculate the quasiparticle band structure and

obtain an energy band gap in agreement with experiment. In this case the opening of the gap due to the

GW correction can be used as scissor shift to calculate the linear and nonlinear optical properties. The

intra- and inter-band contributions to the imaginary part of wð2Þ312ð�2o;o,oÞ are presented over a broad

energy range. It is found that the small energy gap semiconductor CdGeAs2 has larger values of

e1(0) and wð2Þ312ð0Þ than other chalcopyrite structures.

& 2011 Elsevier Inc. All rights reserved.
1. Introduction

Cadmium germanium arsenide (CdGeAs2) is an important tern-
ary chalcopyrite structure semiconductor, standing out because
of its extremely high second-order nonlinear optical coefficient
(d36¼236 pm/V) combined with adequate birefringence for phase
matching and wide infrared transparency range (2.4–18 mm) [1].
These properties make this material very promising for the gen-
eration of mid-infrared frequencies using second harmonic genera-
tion (SHG) and a CO2 laser. CdGeAs2 is a narrow direct-gap
semiconductor, and the band gap of this material is about 0.57 eV
[2] at room temperature and about 0.67 eV [3] at liquid helium
temperature. Laser devices have been reported [4–7] using large,
crack-free, single crystals grown by the horizontal gradient freeze
(HGF) technique [8–11]. Although laser devices have been reported
using CdGeAs2 crystals, absorption losses due to defects are still a
major limitation for the efficiency of the devices [5–7].

There have been several experimental studies of the structural
[12–18] and electronic [2,3,19–22] properties of this material, as
well as a number of investigations of the linear [1,23–35] and
nonlinear [1,36,37] optical response. However, theoretical efforts
have been primarily concerned with ground state properties
[22,38–46]. While there has been some work on linear optical
response [1,45], the only full band structure calculation of
ll rights reserved.
nonlinear response has been restricted to zero frequency [1]. In
this context, it would be useful to have a comprehensive analysis
of the linear and nonlinear optical properties of CdGeAs2, as
determined from first principles, over a broad energy range.

So far, first principle calculations have been successfully used
to obtain different properties of chalcopyrite structure semicon-
ductors, such as structural, electronic, linear and nonlinear optical
properties [37,45,47–52]. It is well known that the band gap
calculated by generalized gradient approximation (GGA) and local
density approximation (LDA) is generally smaller than the experi-
mental data. The error is due to the discontinuity of exchange-
correlation energy. In order to get the optical spectrum and make
a realistic comparison with experiments one needs to correct for
this. This can be achieved in two ways. The scissors shift is
normally chosen to be the difference between the experimental
and theoretical band gap and is used to shift the conduction
bands only. Another way in which you do not have to rely on
experimental data is to determine the self-energy using GW
approximation [53] (GWA, G is the Green’s function, W is the
screened coulomb interaction). In this case the opening of the
gap due to the GW correction can be used as scissor shift. Many
researchers have adopted the first method. It is worth mentioning
that Rashkeev et al. [37] investigated the birefringence and the
frequency-dependent SHG coefficients of CdGeAs2 using the linear
muffin-tin orbitals (LMTO) method within the atomic sphere
approximation, and the scissors shift has to rely on experimental
gap in their work. In our work, we calculate the quasiparticle band
structure of CdGeAs2 by using GW method and obtain an energy gap

www.elsevier.com/locate/jssc
www.elsevier.com/locate/jssc
dx.doi.org/10.1016/j.jssc.2011.10.014
mailto:bjzhao@scu.edu.cn
dx.doi.org/10.1016/j.jssc.2011.10.014


Y. Yu et al. / Journal of Solid State Chemistry 185 (2012) 264–270 265
in agreement with experiment. Then the corrected gap is used to
calculate the linear and nonlinear optical properties.

In this paper we present a first-principles calculation of the
electronic structure, linear and nonlinear optical properties for
CdGeAs2 using the plane-wave pseudopotential method. Specifi-
cally, we evaluate the dielectric function e(o) and the SHG
response coefficient w(2)(�2o; o, o) over a large frequency
range. The paper is organized in the following way. In Section 2,
we give details of our calculations. The electronic ground state
properties, quasiparticle band structure, linear and nonlinear
optical susceptibilities are presented and discussed in Section 3.
In Section 4, we summarize our conclusions.
Fig. 1. Band structure of CdGeAs2.
2. Computational details

In this work, all the structural optimizations and property
calculations are performed using a plane-wave pseudopotential
implementation of density functional theory (DFT) within the LDA
implemented in the code ABINIT [54]. It relies on an efficient fast
Fourier transform algorithm [55] for the conversion of wave
functions between real and reciprocal spaces, on an adaptation to
a fixed potential of the band-by-band conjugate-gradient algo-
rithm [56], and on a potential-based conjugate-gradient method
[57] for the determination of the self-consistent potential. The
interaction between the valence electrons and the nuclei and core
electrons is described by Troullier–Martins type norm-conserving
pseudopotentials which have been generated thanks to the
FHI98PP code [58]. The exchange-correlation energy is evaluated
in local density approximation (LDA), using Perdew–Wang para-
metrization [59] of Ceperley–Alder electron-gas data [60]. Both Ge
and As pseudopotentials include the 4s and 4p in valence, for Cd
pseudopotential, 4d and 5s are taken as the valence states.

All the calculations involve an eight-atom tetragonal primitive
cell. The original lattice constants and internal coordinate used in
our calculations are taken from the experimental values. For the
optimizations, k-point sampling of 4�4�4 Monkhorst–Pack
grids are used and the plane-wave cutoff of 22 hartree are chosen.
Convergence tests show that the Brillouin zone (BZ) sampling and
the kinetic energy cutoff are sufficient to guarantee an excellent
convergence. The structural parameters are obtained by optimiz-
ing lattice constants and atomic coordinates until all force
components are below 5�10�5 Ha/Bohr. After geometry optimi-
zations, the relaxed structures are used in the electronic structure
and optical response-function (RF) calculations to obtain the band
structure, density of states (DOS), charge density, and dielectric
function and second-order non-linear optical susceptibilities.

We first obtain the electronic ground state properties using
DFT within the LDA. The results tell us that CdGeAs2 is a direct band
gap semiconductor material. In the band structure, the Gamma
(G) point is corresponding to the conduction band minimum (CBM)
and valence band maximum (VBM). As is known, the Kohn–Sham
eigenvalues in the LDA approximation do not give the quasiparticle
energies correctly. When the optical response calculation is made,
thus the self-energy effects must be included. Otherwise the unoc-
cupied conduction bands have no physical significance and a band
gap problem appears: the absorption starts at too low an energy.
In order to take into account the self-energy effects, a scissors
approximation [61,62] is usually used to shift upward all the
conduction bands in order to agree with measured values of the
band gap. We have corrected the band gap at the G point using GW
approximation.

The detailed formalism for the determination of the linear
dielectric tensor and the susceptibility for the SHG have been
presented in Sipe and Shkrebtii [63]. All the calculations are
converged in terms of basis functions as well as in the size of the
k-point mesh representing the Brillouin Zone (BZ). In the linear
optical properties as well as second-order susceptibility calcula-
tions, the irreducible BZ has been sampled with a 8�8�8
Monkhorst–Pack grid.
3. Results and discussion

3.1. Structural optimization

As is well known, the crystal structure of CdGeAs2 is described
by space group I4̄2d and point group 4̄2m. Generally, the II–IV–V2

chalcopyrites are analogous to the widely studied III–V materials
GaP and GaAs, except that the chalcopyrite structure is tetragon-
ally distorted from the simpler zinc-blende structure of the III–V
compounds. We have recently presented results on the structural
properties of CdGeAs2 [46]. The calculated equilibrium values of
the structural parameters, namely a, c/a and u, for CdGeAs2 are
5.912 (in Å), 1.887, and 0.2781 in the LDA approximation. Our
calculations underestimate the equilibrium lattice parameter a(c)
with the maximal error of 0.51–0.58% (0.50–0.60%) with respect to
experimental values, a normal agreement by LDA standards. This
is largely sufficient to allow the further study of electronic, linear
and nonlinear optical properties for CdGeAs2.

3.2. Electronic ground state

3.2.1. Band structure

The band structure of CdGeAs2 along the lines of high sym-
metry points in the BZ are shown in Fig. 1 and the Fermi level (Ef)
is set to zero. These special points in X axle represent the high
symmetry points in the BZ, and for CdGeAs2 with the tetragonal
structure, Z¼(0.5, 0.5, �0.5), G¼(0, 0, 0), X¼(0, 0, 0.5), P¼(0.25,
0.25, 0.25), N¼(0, 0.5, 0). Both the VBM and CBM are at G point, so
CdGeAs2 has a direct band gap with the calculated value to be
0.16 eV. This result is the same as that obtained in Ref. [45], but
it is severe underestimation compared with the experiment
value [2]. When the spin–orbit interaction is not included in the
calculation, the lower three CB states counting from the CBM are
G1, G3, and G2. The energy splitting between G2 and G3 is 0.43 eV,
larger than 0.20 eV predicted by Madelon et al. [22] and closer to
0.46 eV calculated by Limpijumnong and Lambrecht [43]. The top
of the valence band consists of two levels with symmetry G4 and
G5, and the latter is doubly degenerated. The two levels originate
from the same triply degenerate G15 level of the zinc-blende



Fig. 3. Calculated electronic charge density on the (110) plane of CdGeAs2.
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structure. With the use of the sign convention of Ref. [64], the crystal-
field (CF) splitting between them is given by DCF¼e(G5)�e(G4).
It represents the effects of the (i) existence of two distinct cations Cd
and Ge, (ii) tetragonal distortion c/2aa1, and (iii) anion As displace-
ment ua1/4. In the zinc-blende structure (c/2a¼1, u¼1/4) one has
DCF¼0, and the G5þG4 pair forms the triply degenerate state at
VBM. Any of the three factors (i)–(iii) can lead to DCFa0. Our
calculated value DCF for the compound is 0.12 eV and the correspond-
ing experimental value is reported to be 0.21 eV [64].

3.2.2. Total and partial density of states

In order to analyze the electron distribution of each atomic
orbital, we calculate the total DOS and partial density of states
(PDOS). Fig. 2 shows that the valence band of CdGeAs2 can be
divided into three zones: a deep valence band at around �13 to
�11 eV is mainly formed by As 4s bonding states which appears
to be hybridized with the Cd and Ge orbitals, a middle zone from
�9 to �6 eV is mostly composed of the Cd 4d states and the
upper valence band at higher energy is mostly derived from the
anion As 4p states hybridized with the cations Cd 5s, Cd 5p and
Ge 4p states. We find that the top of valence band and the bottom
of conduction band consist mainly of the As atoms. Since As
evaporates easily in the experiment, the band gap could be
changed for the single crystal, which can be grown from CdGeAs2

polycrystal that is synthesized according to the stoichiometric
ratio, and further affects optical transmittance. Therefore, the
amount of As could be increased during the synthesis, deviating
from the stoichiometric ratio.

3.2.3. Charge density

To visualize the nature of the bond character, we calculate the
total electronic charge density on the (110) plane of CdGeAs2

depicted in Fig. 3. In previous papers, we find that the charge
density around the cation is spherical [47,48,65]. The same situation
is met by the crystal CdGeAs2. Obviously, the charge density around
Cd is also spherical. From Fig. 2, we can see that the middle zone
(from �9 to �6 eV) is mostly composed of the Cd 4d states, so the
valence charge density is considerably high and strongly localized
around Cd. As we all know, an electron density plot is useful because
it represents the electron distribution in an orbital and reflect the
Fig. 2. Total and partial density of states (DOS and PDOS) for CdGeAs2.
interactions between bonding atoms. Fig. 3 shows that there are
apparent electron density overlaps between Cd and As atoms as well
as Ge and As atoms which suggests that the Cd–As bond and Ge–As
bond in CdGeAs2 have covalent character. This result is consistent
with the PDOS study. In the inner density contour, the Cd atom is
connected with the As atom, but the Ge atom and As atom are not
connected. This fact indicates that the bonds of Cd–As have more
covalent character than those of Ge–As.

3.3. Quasiparticle excitations

The DFT-LDA approximation is very useful to describe the
electronic ground state of materials. However, the DFT band
structure fails to give reliable quantitative values for the band
gaps of insulators and semiconductors, which are often under-
estimated by as much as 1.0 eV or more. In the present work, we
adopt the GW approximation to correct DFT gaps. In order to
study the quasiparticle excitation energies, we need to go beyond
the LDA approximation. We have a rigorous formulation of the
quasiparticle properties in the context of the one-particle Green’s
function approach. The eigenvalue and wave function of a quasipar-
ticle in a crystal are obtained in this framework by solving the Dyson
equation [66]:

½EkðoÞ�H0ðr;oÞ�jkðr,oÞ�
Z

dr0Sðr,r0;oÞjkðr
0;oÞ ¼ 0, ð1Þ

where the H0 includes the kinetic-energy operator, potential due to
the ions and the Hartree potential of the electrons. In the GWA, the
self-energy S becomes

Sðr,r0;oÞ ¼ i

Z
do0

2p Gðr,r0;oþo0ÞWðr,r0;o0Þeido0 ð2Þ

where Gðr,r0;oþo0Þ is the full Green’s function and d¼ 0þ

Wðr,r0;o0Þ is the dynamically screened Coulomb interaction given by

Wðr,r0;oÞ ¼
Z

d3r00e�1ðr,r00;oÞVð r00�r0
�� ��Þ, ð3Þ

where e�1ðr,r00;oÞ is an inverse dielectric matrix and Vð r00�r0j jÞ is a
bare Coulomb potential.

The one-particle Green’s function G is constructed using the
LDA eigenfuctions and eigenvalues as a starting point and then
iteratively updated using the real parts of the quasiparticle
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energies from Eq. (1). In this approach, the quasiparticles for
semiconductors are on the assumption that the lifetime is infinite.
To screen Coulomb interaction, we use a generalized form of the
Levine–Louie model dielectric matrix extended to finite frequen-
cies using a generalized plasmon-pole model. This model dielec-
tric function is known to give reliable results for various
semiconductors and requires only the dielectric constant eN as
an input. Of course, this can be evaluated from ab initio calcula-
tions. Once the self-energy operator S is constructed, the quasi-
particle energies are calculated as

Eqp
n,k ¼ en,kþ n,k S�VXCj jn,k

� �
, ð4Þ

where VXC is the LDA exchange-correlation potential. Here, we
make use of the fact that the quasiparticle wave functions are
extremely well approximated by the LDA wave functions.

For GWA, a converged ground-state calculation on an opti-
mized structure was first performed. In essence, these calcula-
tions were carried out to first obtain a self-consistent density
and potential Kohn–Sham eigenvalues and eigenfunctions at
the ground electronic state. Calculations were performed on grids
of reciprocal space points (k points) that included band points at
extrema. This was followed by computation of the independent-
particle susceptibility matrix at two frequencies and a calculation
of the susceptibility matrix, the dielectric matrix, and its inverse.
The self-energy matrix elements were then evaluated at selected
k points, which then used to derive the GWA eigenvalues for the
selected states around the highest occupied states. Because
CdGeAs2 is a direct-gap semiconductor, we correct the band gap
for the G point only. Specifically, 30 electronic bands were used to
generate the Kohn–Sham band structure and 90 bands were used
in the screening calculation. An energy cutoff of 8 hartree was
used in the calculation of the screening matrix. For the calcula-
tions of the self-energy matrix elements, 100 bands with an
energy cutoff of 6 hartree were adopted to represent the wave
functions. Though the screening calculation is very time-consum-
ing, it is still feasible. So, we did not weaken the parameters found
in the previous convergence studies. As it is expected, GW
corrections widened the energy gaps. The calculated energy
gap is 0.35 eV at G point. This is substantially larger than the
LDA value of 0.16 eV and closer to the experimental value
of 0.57 eV [2]. The gap due to the GW correction can be used
as a scissor shift to calculate the linear and nonlinear optical
properties.
Fig. 4. Calculated (a) real and (b) imaginary part of the dielectric function e(o) of

CdGeAs2.

Table 1
Main peak positions (in eV) of the imaginary part e2(o).

Imaginary

part

Peaks (eV)

A B C D E F G H I J K L

e2 2.69 3.30 3.93 4.29 4.82 5.40 5.62 5.97 6.53 6.88 8.05 8.61
3.4. Linear optical response

The most important measurable quantity we address in this
section is the dielectric function e(o) of the compound, which is
a complex quantity. The optical properties of the material are
determined by the dielectric function e(o) given by e(o)¼e1(o)þ
ie2(o). The imaginary part of the dielectric function, e2(o)
depends on the joint density of states and the momentum matrix
elements. Due to the tetragonal symmetry, the dielectric func-
tions are resolved into two components e2xy(o), which is the
average of the spectra for polarizations along the x and y

directions (electric field perpendicular to the c-axis) and corre-
sponding to the z direction (electric field parallel to the c-axis).

We present the average dielectric function for simplicity (e1(o)¼
(e1x(o)þe1y(o)þe1z(o))/3, e2(o)¼(e2x(o)þe2y(o)þe2z(o))/3). The
optical properties of solids can be described by means of the
transverse dielectric function e(o). There are two contributions to
e(o), namely intraband and interband transitions. The contribu-
tion from intraband transitions is important only for metals. The
interband transitions of the frequency dependent dielectric func-
tions can be split into direct and indirect transitions. In this paper,
we neglect the indirect interband transitions involving scattering
of phonons assuming that they give a small contribution to the
frequency dependent dielectric functions. To calculate the con-
tributions of the direct interband to the imaginary parts of the
dielectric functions, it is necessary to sum up all possible transi-
tions from the occupied to the unoccupied states taking the
appropriate transition dipole matrix elements into account.

A dense mesh of uniformly distributed k-points is necessary in
our calculations of the optical properties. Our optical properties
are scissors corrected by 0.19 eV. This value is the difference
between the calculated energy gap (0.16 eV) by LDA and the
corrected energy gap (0.35 eV) by GWA. Since the optical spectra
have been analyzed for an energy range 0–20 eV, the spectra
contain many peaks which correspond to electronic transitions
from the valence band to the conduction band. The values of
peaks of the imaginary part of the frequency dependent dielectric
function which are labeled with letters in Fig. 4(b) are summar-
ized in Table 1. Through the calculated electronic band structures
and density of states, we can explain the different peak structures
seen in Fig. 4. The spectra can be divided into two major groups of
the peaks, the first from 2 to 5 eV and the second after 5 eV. The
first group is dominated by Cd-sp and Ge-sp transitions, where the
first direct interband transition arises between the VBM and CBM,
and the first peak (at 2.69 eV) is clearly due to the G direction of
the BZ. The second group of the peaks is deduced from the Ge-sp

transitions, where the main peak is located at 5.62 eV, and mainly
arises from the N direction of the BZ.

The real part of the dielectric function e1(o) is calculated by
using the Kramers–Kronig relations [67]. The results of our
calculated e1(o) spectra are shown in Fig. 4(a). The most impor-
tant quantity is the zero frequency limit e1(0), which is the
electronic part of the static dielectric constant that depends
strongly on the band gap. The calculated e1(0) is compared with
both experimental and theoretical data in Table 2. We note that a
smaller energy gap Eg yields a larger e1(0) value [48–50,70–72].



Table 2
Calculated static dielectric constants of CdGeAs2 compared with both experimen-

tal and theoretical data.

Static dielectric

constant

This work Theor. Expt.

e1(0) 17.28 14.98a 18.770.5b 15.0a 16.2c

a Ref. [68].
b Ref. [24].
c Ref. [69].

Fig. 5. Calculated total Imwð2Þ312ð�2o;o,oÞ spectra along with the intra-(2o)/(1o)

and inter-(2o)/(1o) band contributions.

Fig. 6. Absolute value of the SHG susceptibility 9wð2Þ312ð�2o;o,oÞ9 for CdGeAs2.

Y. Yu et al. / Journal of Solid State Chemistry 185 (2012) 264–270268
This can be explained on the basis of the Penn model [73]. The
Penn model is based on the expression e(0)E1þ(:op/Eg)2. It is
clear that e(0) is inversely proportional to Eg. We can determine Eg

from this expression by using the values of e1(0) and the plasma
energy :op.

3.5. Nonlinear optical response

In a crystal, the polarization P can be expressed as a Taylor
expansion of the macroscopic electric filed, E, according to

Pi ¼ Ps
i þ
X

j

wð1Þij Ejþ
X
j,k

wð2Þijk EjEkþ � � � ,

where indices i, j, k denote the Cartesian components, Ps is the
zero-field (spontaneous) polarization vector, wð1Þij is the linear
dielectric susceptibility (second-rank tensor), and wð2Þijk is the
second-order nonlinear optical susceptibility (third-rank tensor).
The higher order terms can also be calculated but in this section
we are only interested in the second-order optical response.
Since the CdGeAs2 compound is belong to the point group 42m,
there are only two independent components of the SHG tensor,
namely, 123 and 312 components (1, 2 and 3 refer to the x-,
y- and z-axis, respectively, which are chosen along the cubic
axes). In the static limit, the two components are equal according
to Kleninman ‘‘permutation’’ symmetry, which dictates additional
relations between tensorial components beyond the purely crys-
tallographic symmetry.

In this section, we focus on the results for the different
contributions to the imaginary part of wð2Þ312ð�2o;o,oÞ and the
SHG susceptibility in the zero frequency limit. The nonlinear
optical properties are more sensitive to small changes in the band
structure than the linear optical properties. Hence, any anisotropy
in the linear optical properties is enhanced in the nonlinear
spectra. This is attributed to the fact that the second harmonic
response involves 2o resonance in addition to the usual 1o
resonance. In order to better understand the origin of the relative
magnitudes of the intraband and interband contributions, we
now consider the frequency-dependent wð2Þð�2o;o,oÞ functions,
or, more precisely, their imaginary part Imwð2Þð�2o;o,oÞ, from
which the real and in particular its static value can be obtained by
a Kramers–Kronig relations [67]. Different contributions to the
imaginary part of wð2Þ312ð�2o;o,oÞ are presented in Fig. 5. We
reveal that all SHG susceptibility is vanished at zero energy. Major
SHG peaks occur between 1.0 eV and 8.0 eV. The 2o terms start
contributing at energy �1/2Eg and the 1o terms for the energy
values above Eg. In the low energy region (r3 eV), the SHG
optical spectra are dominated by the 2o contributions. Beyond
3 eV the major contributions come from the 1o terms. Only one
peak near 1.42 eV possesses inter (2o) transitions. At energy
higher than 8.0 eV, the imaginary part of wð2Þ312ð�2o;o,oÞ drops to
zero very fast. Both the inter (1o) and intra (1o) contributions
in the energy region below 9.5 eV change signs several times.
However, the inter (2o) and intra (2o) contributions in the most
interesting energy region below 8 eV (for the Kramers–Kronig
integral which gives the zero frequency value) do not change the
sign (the former is negative, the latter is positive). This means that
both inter (2o) and intra (2o) contributions to the static SHG are
large and have opposite signs.

In Fig. 6 we plot the absolute value of the SHG susceptibility

9wð2Þ312ð�2o;o,oÞ9 for CdGeAs2. The wð2Þ312ð�2o;o,oÞ component

dominates in the spectrum for virtually all energies. The

9wð2Þ312ð�2o;o,oÞ9 is calculated from the Imwð2Þ312ð�2o;o,oÞ and

Rewð2Þ312ð�2o;o,oÞ. To our knowledge, the lack of experimental

data prevents any conclusive comparison with experiment over a

large energy range. We have succeeded in calculating the SHG

susceptibility of CdGeAs2 beyond zero frequency using a pseudo-

potential plane-wave method for the first time. Specially, the

maximum value appears at 1.41 eV. Our calculated SHG suscept-

ibility wð2Þ312ð0Þ¼188 pm/V at zero frequency, which is close to the

experimental values of 186716 pm/V [74,75] and 236 pm/V [1].

Rashkeev et al. [37] have calculated the value of w2ð0Þ in CdGeAs2

(506 pm/V) which is higher than those experimental values and

our calculated value above. The higher value of w2ð0Þ is mainly

due to the overcorrected scissors value. CdGeAs2 has a smaller
energy gap Eg than other chalcopyrite structure semiconductors;
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we notice that the smaller band gap compound gives higher
values of wð2Þ312ð0Þ [49,50]. However, the value of the SHG cannot be
explained only by a small band gap. It is found that the intraband
and interband contributions are also important to the second-
order response.
4. Conclusion

In conclusion, we have presented results for the electronic,
linear and nonlinear optical properties of CdGeAs2 using a pseu-
dopotential plane-wave method. Firstly, the structural parameters,
including the internal coordinates, are relaxed, and excellent
agreement is achieved with experimental results. Our results for
the band structure and DOS show that CdGeAs2 has a direct band
gap with the calculated value to be 0.16 eV. The calculated total
DOS and PDOS show that the valence band of CdGeAs2 can be
divided into three zones. To visualize the nature of the bond
character, we calculate the total electronic charge density on the
(110) plane of CdGeAs2. We find that the charge density around the
cation Cd is spherical in agreement with the previous papers and
the bonds of Cd–As have more covalent part than those of Ge–As.

The DFT band structure fails to give reliable quantitative
values for the band gaps of semiconductors. In our present work,
we use the way in which we do not have to rely on experimental
gap is to determine the self-energy using GW approximation. In
this case the opening of the gap due to the GW correction can be
used as scissor shift. The calculated energy gap is 0.35 eV at G
point. This is substantially larger than the LDA value and closer to
the experimental value. The corrected gap is used as scissor shift
to calculate the linear and nonlinear optical properties.

Our results for the imaginary part of the frequency dependent
dielectric function are labeled with letters and summarized. The
origin of these peaks is due to the interband transitions of Cd-sp and
Ge-sp. The most important quantity is the zero frequency limit e1(0),
which is found to be in good agreement with both experimental and
theoretical data. We note that a smaller energy gap Eg yields a larger
e1(0) value. We have succeeded in calculating the SHG susceptibility
of CdGeAs2 beyond zero frequency using a pseudopotential plane-
wave method for the first time. The intra- and inter-band contribu-
tions to the imaginary part of wð2Þ312ð�2o;o,oÞ are presented over a
broad energy range. One could expect that the spectra structures in
Imwð2Þ312ð�2o;o,oÞ could be understood from the features of e2(o).
Unlike the linear optical spectra, the features in the SHG suscept-
ibility are very difficult to identify from the band structure due to
the presence of 2o and 1o terms. But we can use the linear optical
spectra to identify the different resonance singularities leading to
chief features in the SHG spectra. The first spectral band in
Imwð2Þ312ð�2o;o,oÞ between 0 and 3.5 eV is mainly originated from
2o resonance and arises from the first structure in e2(o). The
second band between 3.5 and 5 eV is associated with interference
between 1o resonance and 2o resonance and arises from the high
structure in e2(o). The last band from 5 to 9.5 eV is mainly due to
1o resonance and is associated with the tail in e2(o). Our calculated
SHG susceptibility wð2Þ312ð0Þ¼188 pm/V at zero frequency, which is
close to the experimental values. The smaller energy band gap
compounds have larger values of wð2Þ312ð0Þ in agreement with the
experimental measurements and other theoretical calculations.
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